Overhead v. Underground Transmission Lines:
Factors & Analyses in Considering Placement

Experience you can trust.



Engineer’s Question

Note: Until it's in my backyard!
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Starting Point

e Let's agree that a line is needed from Point A to
Point B.

e Then consider:
— Routing alternatives
— Design alternatives




Routing Alternatives

e Use existing ROWs
e |dentify new ROWs
— Public lands
— Private lands
e Special considerations
— Bodies of water (bridges)
— Highways
— Parks
— Schools

[emax




Transmission Design Alternatives

e \oltage level
e Single versus double circuit
e Overhead versus Underground

e AC/DC
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Basic Factors in Comparing Overhead
versus Underground
e Overhead is less costly but much more visible

e Underground is “out of sight” but much more
expensive

. Both line types produce EMF but exposures differ

il

— Wetlands i
= Mountainous terrain | _—




Key Considerations in Choosing the
Underground Alternative

e |s it technologically feasible?
e |s the cost acceptable?

e \What other costs will be incurred?
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Elements of Technological Feasibility

Effects on local system
Effects on regional system
Risks of implementation

— Failure potential
— Industry experience to date
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Key Challenge — Transmission Line
Capacitance

e Capacitance

— Gives a gross measure of the electric field
between two conductors.

— Present whenever two (or more) conductors
carrying varying currents at different voltages are
close to one another.

— Occurs In transmission lines and fixed capacitors
(used to control voltage)

e Underground cables have much more capacitance

than overhead lines
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Choice of Cable Type Affects Feasibility

High Pressure Fluid Filled
(HPFF)

Cross-Linked Polyethylene
(XLPE)

Design/
Manufacturing

=Proven Reliable — Over 30 years experience
at these voltage levels

=*Fewer Manufacturers as Industry moves
toward XLPE

=lmproving design/manufacturing techniques
=Direction the Industry heading
=|imited in-service experience at 345 kV

Maintenance

compensation required

=Lower operating temperature, reduces
current carrying capability

=More auxiliary equipment (cable
fluid/pressurization system, piping cathodic
protection)

Installation =Mature installation techniques =Duct or direct burial
=Greater availability of experienced =Limited experience with splicing at higher
personnel voltages of 345 kV
=Continuous piping system between = Availability of skilled craftsmen
terminals =Best practice — installation of partial
discharge monitors for each splice
Operation & =Higher capacitance — more reactive =|_ower capacitance

=Higher operating temperature — may
eliminate 345 kV series reactor required for
line out conditions

=Cautiously optimistic about going forward
reliability

=Operating temperature can be continuously
monitored by sensors

Environmental
Impact

=Fluid filled
=Usually installed as 3-phases in one pipe,
which cancels out the EMF

=Solid core

=Usually installed as a single-phase in each
conduit creating the potential for EMF
problems

Source: 1SO New England, Discussion of Cable Technologies Under Evaluation for use in the Southwest

Connecticut 345 kV Transmission Project, Peter T. Brandien, March 14, 2005
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Two Types of Underground Cables

= '_il' — _-_
e
: ST

Three-Phase High Pressure Fluid Filled, (HPFF) Single Phase Cross-Linked Polyethylene, (XLPE)

Source: 1SO New England, Discussion of Cable Technologies Under Evaluation for use in the Southwest _I P
Connecticut 345 kV Transmission Project, Peter T. Brandien, March 14, 2005 11 KEMA -~




Comparative Failure Rates

Cable Type Actual
(per 100 miles of cable per year)
HPFF in steel pipe 0.5
XLPE in Duct — Optimistic 0.64
XLPE in Duct — Realistic 2.02
XLPE in Duct — Pessimistic 9.93

Source: 1SO New England, Discussion of Cable Technologies Under Evaluation for use in the Southwest _I P
Connecticut 345 kV Transmission Project, Peter T. Brandien, March 14, 2005 12 KEMA -~




Analyses Used to Evaluate Feasibility

Thermal & voltage
Stability

Short circuit

Harmonic performance

Transient
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Harmonic Resonance — Plot 1

Effect of Load Variation on Harmonic Impedance of Phase Il Base Case

Norwalk 345 kV Harmonic Impedance for Different Load Levels
Minimum Generator Dispatch, All Capacitors ON
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Source: KEMA Harmonic Impedance Study for Southwest CT Phase Il Alternatives K E M A /
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Harmonic Resonance — Plot 2

Effect of Capacitor Allocation on Harmonic Impedance of Phase Il Base Case

Norwalk 345 kV Harmonic Impedance with Capacitors On vs. Off
Light Generator Dispatch, Full Load
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Source: KEMA Harmonic Impedance Study for Southwest CT Phase Il Alternatives K E M A -/
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Transient Network Analysis — Why?

e Transient switching events cause higher frequency
currents.

e These currents are amplified by harmonic
resonances.

e Temporary overvoltages (TOVSs) occur with potential
to damage equipment and cause outages.
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Temporary Overvoltages (TOVs)

e Key Concerns
— Maximum Level
— Duration

e Must be measured for:

— Various conditions
— Various locations
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Results for Connecticut — 2 Cycle
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Results for Connecticut — 6 Cycle
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Mitigation Possibllities

e STATCOMS
— Operational complexity unacceptable

e Filtering
— C-Type Flilters appear promising
— Little or no industry experience for this application
— Risk unacceptable for TOVs anticipated
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Thank you.

Questions?




