Virginia Quiet Pavement Implementation Program

Jose Gomez
Director of Research

Joint Commission on Transportation Accountability
July 16, 2012
“Quiet” Pavement

What it is:
- In General – a wearing surface that minimizes tire-pavement noise production and propagation
“Quiet” Pavement

Asphalt – “small-textured” porous mix (e.g., open-graded asphalt concrete)
“Quiet” Pavement

Concrete – negative-textured longitudinal grind and groove (e.g., “Next Generation Concrete Surface”)
Noise Measurement

Wayside

Tire-Pavement (i.e. OBSI)
Chapter 790 of the 2011 Virginia Acts of Assembly (Code of Virginia § 33.1-223.2:21)

Directs VDOT to:

- Expedite the development of QP technology by including contract specs for QP technology and sound mitigation alternatives if sound mitigation is a consideration.
- Construct demonstration projects to assess QP technologies.
- Perform assessments to evaluate functionality/safety of QP technology in Virginia's climate over two full winters.
- Include in the report:
 - Results of demonstration projects,
 - Results of the use of QP in other states,
 - A plan for routine implementation of QP, and
 - Safety, cost, performance issues of the technologies.
Quiet Pavement Task Force

Co-Chairs:
Andy Babish, PE, State Materials Engineer
Richard Schreck, Executive Vice President, VAA

Members:
Emmett Heltzel, PE, VDOT Maintenance Division Administrator
Trenton Clark, PE, VAA Director of Engineering
David Lee, PE, VDOT Salem District Materials Engineer and Chairman VCTIR Asphalt Research Advisory Committee
Paul Kohler, VDOT Noise Abatement Section Manager
Michael Sprinkel, PE, VCTIR Associate Director of Research
Kevin McGhee, PE, VCTIR Associate Principal Scientist
Ed Dalrymple, Vice President, Chemung Contracting
David Helmick, Vice President, Superior Paving Corp.
Bob Long, American Concrete Pavement Association
Del. Jim LeMunyon, JCTA Subcommittee on Quiet Pavements

7/17/2012
Project Selection Criteria

- Four-lane divided, high-speed corridor
- Good overall pavement structure
- Good geometrics
- Limited at-grade intersections
- 1-mile per asphalt technology/ ½-mile for concrete
- No curb/gutter or existing sound mitigation measures
1. SR 7 By-Pass in Leesburg (A)
2. SR 199 west of Williamsburg (A)
3. SR 288 near Chester (A)
4. I-64 Virginia Beach (C)
5. SR 76 Richmond (C)
Demonstration Projects (Asphalt)

Plan View

SMA 9.5 (1.5 in.)

AR-PFC 9.5 (1 in.)

PFC 9.5 (1 in.)

PFC 12.5 (2 in.)
Demonstration Projects (Conc)

Exist. Finish

Conv. Grind (CDG)

Next Gen. Concrete Surface (NGCS)

Exist. Finish

Plan View
Functional Evaluation

Texture

Tire-Pavement Noise

Skid Resistance

Ride Quality

Wayside Noise

Winter Function & Maintenance
Preliminary Findings - “new” materials and treatments
QP Demonstration Projects – Spring 2012

- OBSI (dBA)
- AR-PFC9.5
- PFC 12.5
- AR-PFC 9.5
- PFC 12.5
- PFC 9.5
- NGCS
- PFC 12.5
- PFC 9.5
- NGCS
- SMA 9.5
- SMA 9.5
- PFC 9.5
- SMA 9.5
- AR-PFC 9.5
- CDG
- CDG
- Transv. Tine
- Transv. Tine
Typical Virginia Pavements vs. QP Demonstration Projects

OBSI (dBA)

- 2010 OBSI Survey—Typical Virginia Pavements
- QP Demonstration Projects – Spring 2012
Friction – LWT & GT

<table>
<thead>
<tr>
<th>Pavement Type</th>
<th>LWT-S-12</th>
<th>GT-S-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMA 9.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR-PFC 9.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFC 9.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFC 12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NGCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary (Tire-Pavement Noise)

- Quiet asphalt technologies *measurably* less noisy on average than control (note: control technology NOT noisy)
- Next Generation Concrete Surface (NGCS) *noticeably* less noisy than control
- None of the surfaces became louder over the winter (note: milder than normal winter)
Summary (Other Properties)

• Ride quality is critical to quiet pavements and excellent ride quality was achieved in the projects.
• The QP technologies exhibit good resistance to skidding
• The QP technologies have reduced splash and spray with improved wet-weather visibility
• There were no reports of compromised safety during winter weather with QP
Next Steps

• Two most promising asphalt technologies to be tested at NCAT – starting fall 2012
• Two most promising technology components (rubber modified binder & PFC 12.5) to be installed summer 2012
• Noise (and other) testing continues
• Costs will continue to be evaluated
 – Life-cycle cost models to be developed
Life Cost Model Components

• Allowable substitution – will FHWA permit QP strategy in lieu of noise barriers?
• “Acoustic longevity” – QP replacement cycle?
• Additional maintenance costs – winter and periodic cleaning/vacuuming
• Value of other functional benefits – e.g., reduced rolling resistance, improved safety & comfort, etc.
For more information:
Kevin.McGhee@vdot.virginia.gov

Links to Interim Report:
http://leg2.state.va.us/dls/h&sdocs.nsf/0/e0a4b50ad340248c8525787e0057d09a?OpenDocument

http://www.virgiiniadot.org/VDOT/Projects/asset_upload_file884_5721.pdf