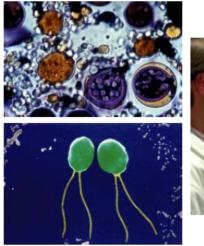
Algae to biodiesel: Turning a question into an answer

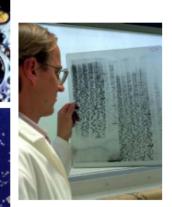
Patrick G. Hatcher

Executive Director VCERC Batten Endowed Chair in Physical Sciences, Professor of Chemistry and Biochemistry, Old Dominion University

Presentation to the Commission on Energy and Environment October 14, 2008

http://www.vcerc.org/




Biomass from Algae for the production of biodiesel

National Renewable Energy Laboratory

NREL/TP-580-24190

A Look Back at the U.S. Department of Energy's Aquatic Species Program: Biodiesel from Algae

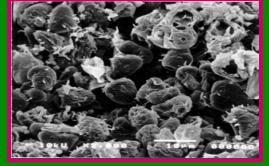
Estimated cost: \$1.40 to \$4.40/gal

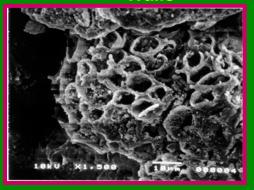
Or

\$60 to \$100 per barrel of oil equivalent

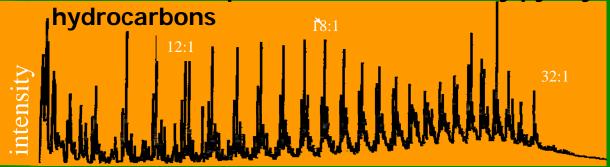
7.5 billion gallons ofbiodiesel per year requires500,000 acres of water

At \$1/gal profit, the annual return would be \$7.5 billion




Why is it attractive ?

1. Algae are the original source of petroleum


Cells during Growth

4-Million-Year-Old Fossilized Cell Walls

2. If we simulate petroleum formation by pyrolysis, we produce

Pyrolysis/GC/MS chromatogram of algae

3. that resemble petroleum

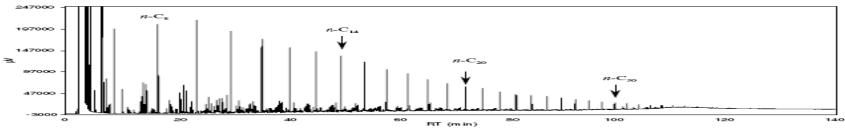


Fig. 1. GC trace of the total Safaniya oil.

Why Is It Attractive?

1. Algae outperforms all other plant-based sources of alternative fuels

Gallons of Oil per Acre per Year

% of Agricultural Land Required

to Fuel US Transportation

Corn	15	CORN	1,700 %
Soybeans	48	SOYBEANS	650 %
Safflower	83		
Gamerici		CANOLA	240 %
Sunflower	102	CANOLA	240 /0
latuanha	475	JATROPHA	154 %
Jatropha	175	JAIROPHA	134 /0
Rapeseed	127		100.0/
Rapescea	127	COCONUT	108 %
Oil Palm	635		
		OIL PALM	50 %
Microalgae*	1,850		
N/ioroolaoo * *	E 000 1E 000	MICROALGAE	2 – 5 %
Microalgae**	5,000 – 15,000		_ • • •

2. Does not require agricultural land, competing with farm crops

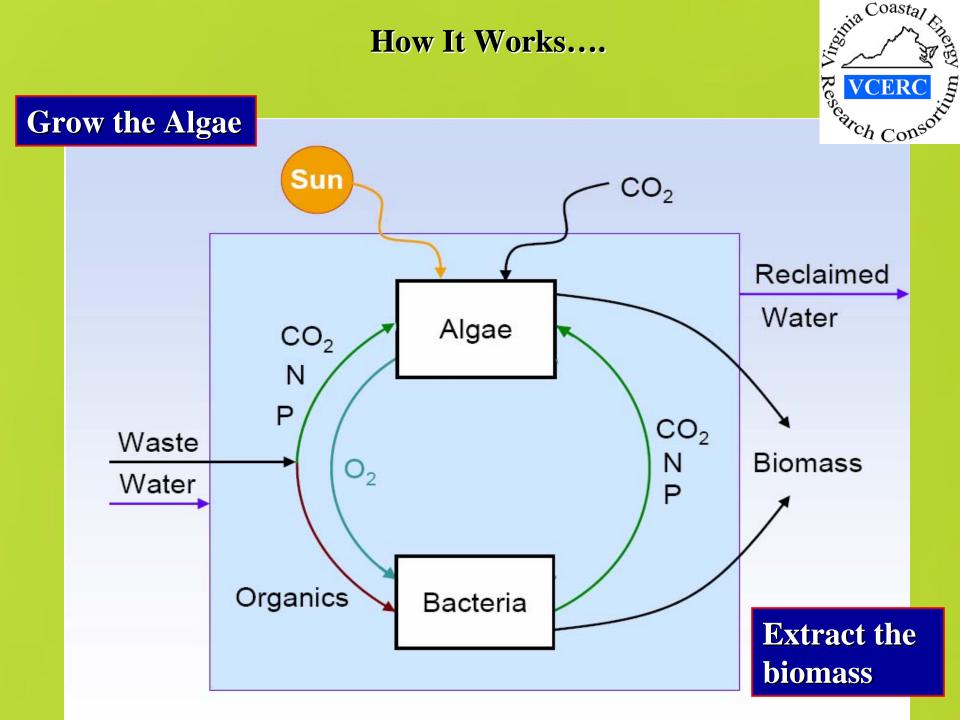
* Actual biomass yields ** Theoretical biomass yields

Oil Content of Some Microalgae

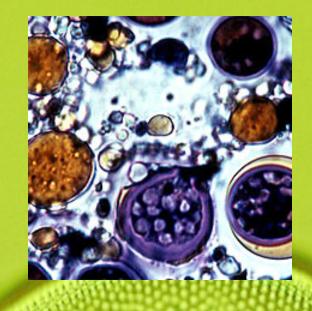
Microalga	Oil Content (% dry wt)
Botryococcus braunii	25–75
Chlorella sp.	28–32
Crypthecodinium cohnii	20
Cylindrotheca sp.	16–37
Dunaliella primolecta	23
Isochrysis sp.	25–33
Monallanthus salina	>20
Nannochloris sp.	20–35
Nannochloropsis sp.	31–68
Neochloris oleoabundans	35–54
Nitzschia sp.	45–47
Phaeodactylum tricornutum	20-30
Schizochytrium sp.	50–77
Tetraselmis sueica	15–23

From : Chisti, Y. 2007. Biodiesel from microalgae. *Biotechnology Advances* **25** 294–306

Why is it attractive?


3. Algal production and ensuing biodiesel can be coupled with numerous industrial processes

- a. Electric power generation to reduce CO₂ emissionscarbon credits (algae need CO₂ as a carbon source to grow)
- Agricultural and municipal wastewater runoff to clean up nutrient-laden effluents (algae require the nutrients such as ammonia, phosphates, and nitrates for growth)
- c. Clean-up of algae from eutrofied waterways-can pump and filter algae for use as a feedstock for biodiesel



How It Works....

How It Works....

Extract the biomass

Extract the lipids = "bio-crude" oil

How It Works....

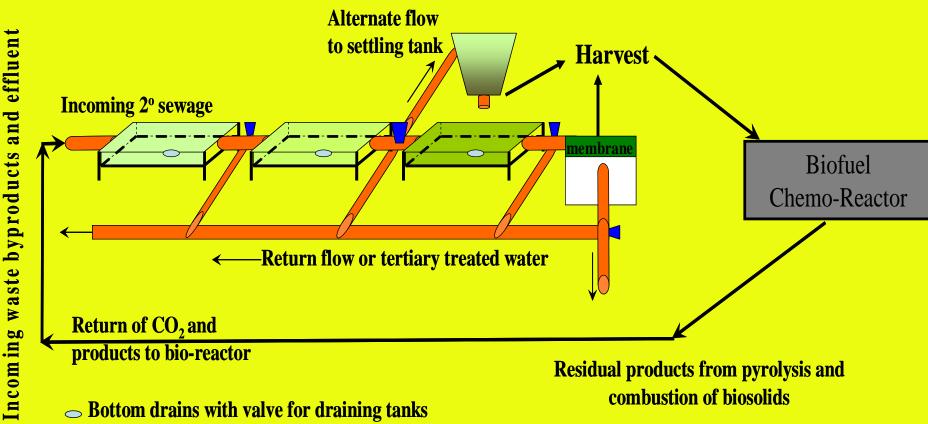
Refine into bio-diesel and other products

What we (ODU, VCERC) are currently focusing on

Optimizing

Interfacing

Design Solutions



Scaling

The ODU strategy: production of algal biomass for conversion to biodiesel

Algae production coupled to wastewater

Shut off valves to isolate or divert flows

Test Facility: Virginia Initiative Plant Hampton Roads Sanitation District

Pilot-Scale Reactors at VIP

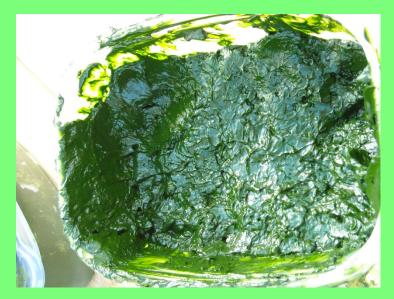
- Biomass production rate >Nutrient uptake
- Balance gas transfer (CO₂ input O₂ stripping)
- Instrumentation and controls
- Separation/dewatering

Concurrent laboratory culturing ongoing using VIP effluent

Accomplishments:

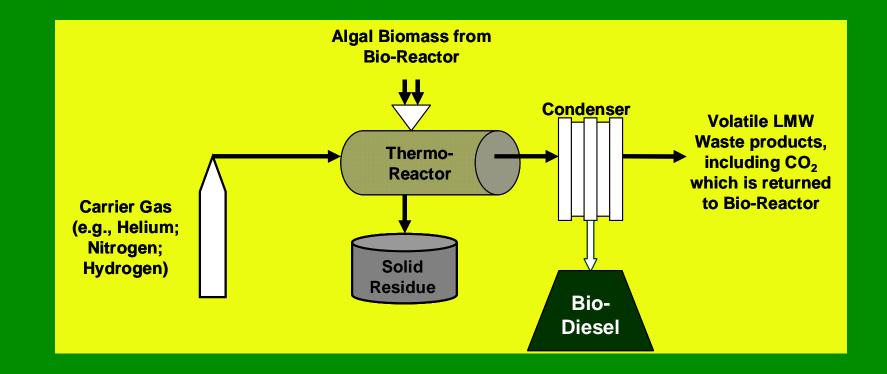
Pilot-scale facility near Hopewell, VA- stand alone
 Build a similar facility at VIP plant- wastewater

Stand-alone pilot-scale facility


Anticipated production:

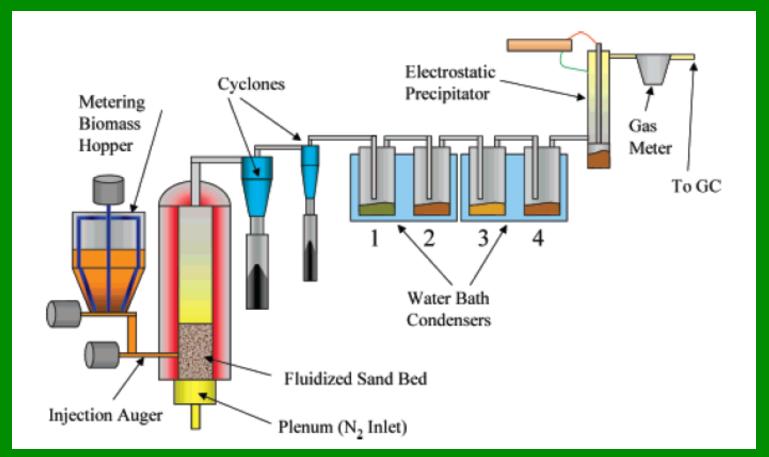
3000 gallons biodiesel/yr/acre 9,000,000 kg biomass/yr/acre \$ 980,000 \$3,200,000

Harvesting the algae



Continuous flow centrifuge and other approaches

Algae paste

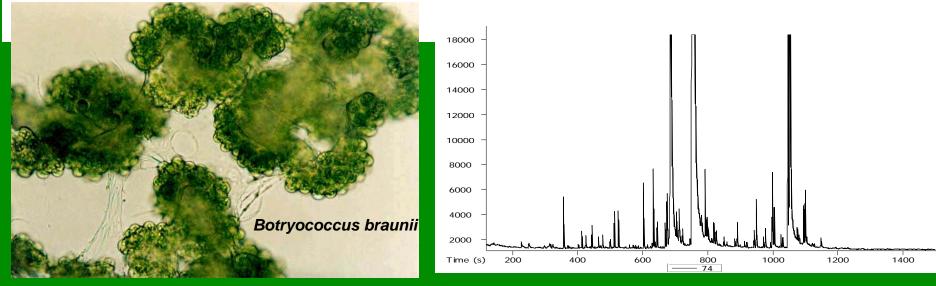

Batch-Mode Converter: for conversion of algal biomass to biodiesel-filed provisional patent

Seed funds from ODURF (\$50,000 in FY08) were used to develop "proof of concept" chemoreactor

Second generation flow-through converter

Fluidized bed converter being constructed from monies provided by ODURF and VCERC

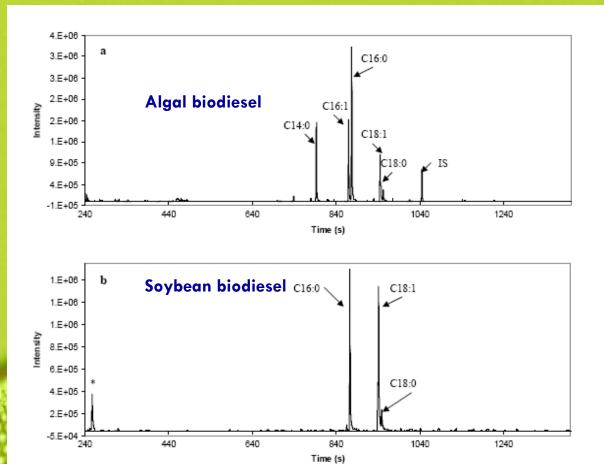
USDA, facility- being used for switchgrass conversion to bio-oil


Boteng et al., Ind. Eng. Chem. Res., 2007

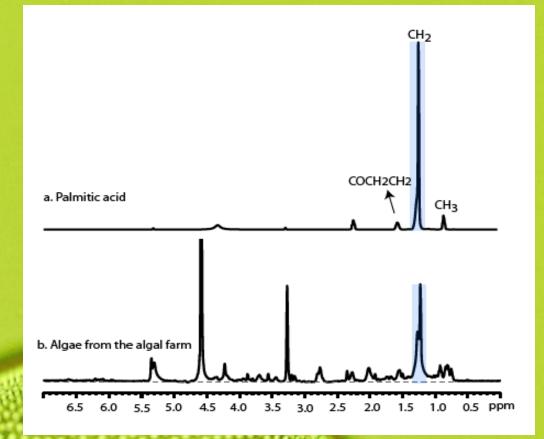
Biodiesel Production from Microalgae

Table. Biodiesel production from different algae strains with a benchtop converter:

Туре	Species	Oil-like yield
Protist (brown tide algae)	CCMP 1847	3%
Diatom	Phaeodactylum tricornutum	3%
Coccolithophorid	Pleurochrysis carterae	7%
Green algae	Dunaliella spp.	4%
Green algae	Chlorella pyrenoidosa	12%
Green algae	Botryococcus braunii	37%


Our preliminary results demonstrate that *Botryococcus braunii*, a green algae strain from fresh water, produces the highest diesel yield using our converter.

- algae sample from Lake James, dominated by diatoms;
- soybean biodiesel is from a commercial biodiesel company;
- Results: algae biodiesel is very similar chemically to commercial biodiesel
- However, the procedure is tedious and time consuming. A better and faster method is needed.


Quality of algae biodiesel

GC-TOF-MS analytical ion chromatograms

Use of Nuclear Magnetic Resonance (NMR) Spectroscopy

 This technique provides sharp signals, and only takes 30s to analyze a sample.

Proton NMR on a palmitic acid standard and an algal sample collected from the Hopewell algal farm.

Sample#	Location	Dominant Species	Oil content
6	Lake Smith	Cyanobacteria	22.4%
7	Lake Maury	Cyanobacteria	23.1%
9	Lake Whitehurst (west)	Cyanobacteria	23.9%
10	Lake Whitehurst (south)	Cyanobacteria	21.1%
11	Elizabeth River (ODU Sailing center)	Dinoflagellate diatom	42.1%
12	OAES pond	Cyanobacteria	13.3%
24	Lake Kempsville	Cyanobacteria	22.1%
27	Lake Christopher	Chlorophyte	20.0%
31	Elmwood Retention pond	Cyanobacteria	23.9%
VIP	ODU sewage treatment plant	Chlorophyte	31.2%
Big Blue	ODU Greenhouse	Chlorophyte	24.0%

Table 1. Oil contents (NMR) of algae collected from aquatic environment around Norfolk

Does the algal biodiesel work?

Current Activities

Constructing pilot-scale algal farms

- 1. Collaborative with HRSD VIP plant near campus- Tank farm
- 2. Collaborative with "algal" farmer in Hopewell, VA area

3. Collaborative with Hopewell, VA wastewater facility

High throughput, second-generation chemoreactor under construction

Designing of harvesting technology (preparing IP disclosure) Collaborating with Acent via SBIR

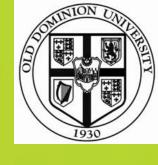
Possible Commercial Ventures

- 1. Algal biodiesel production for wastewater industry- \$40 million/yr profit American Biofuels Corporation (ABC)- Donn Dresselhuys
- 2. Algal farming in stand-alone facilities- Algal Farms, Inc.- \$20 million/yr profit
- 3. Algal farming/large-scale for production of biofuels
 - 1. Use of Navy OLF site (20,000 acres) \$50 million/yr profit
 - 2. In association with Danville/Southside wastewater facilities
- 4. Algal farming associated with Powerplants for CO₂ sequestration and fuels BIOCO collaborative
- 5. Biodiesel production from algal/other feedstocks

Acknowledgements

ODU team

Dr. Margaret Mulholland, Assoc. Prof. Oceanography Dr. Andrew Gordon, Prof. Biological Sciences Dr. Harold Marshall, Emeritus Prof. Biological Sciences Dr. Han Bao, Prof. Mechanical Engineering Dr. Gary Schafran, Prof. and Chair Civil & Environ. Engineering Dr. Aron Stubbins, Research Assist. Prof., Chemistry & Biochemistry Dr. Zhanfei Liu, Postdoc, Chemistry & Biochemistry Dr. Elodie Salmon, Postdoc, Chemistry & Biochemistry Dr. Chris Burbage, Postdoc, Oceanography Richard Hubbard, Senior Technician Adair Johnson, Technician, Chemistry & Biochemistry


VIMS team

Dr. Elizabeth Canuel, Prof. Marine Science Dr. Deborah Bronk, Prof. Marine Science

JMU team Dr. Christopher Bachmann, Assist. Prof. Integrated Science & Technol.

UVA team Dr. Robert Davis, Prof. and Chair, Chemical Engineering

HU team Dr. Ates Akyurthu, Prof. and Chair, Chemical Engineering Dr. Jale F. Akyurthu, Prof. of Chemical Engineering

