Overview

- National US DoE voluntary program to promote energy independence in transportation
- 90 Coalitions nationwide
- One designated Coalition in Virginia (Hampton Roads)
- Statewide effort ongoing

DoE Website:

http://www.eere.energy.gov/cleancities/

Virginia Clean Cities:

http://www.hrccc.org

Transportation Oil Gap 22 20 Rail Air 18 Million barrels per day 16 **U.S. Production** Marine 14 Off-Road **Heavy Trucks** 12 10 8 **Light Trucks** 6 4 Cars 2 0 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030

Alternative Fuels—<u>Partial</u> Solution

- Domestically produced
- Derived from renewable sources
- Reduced harmful pollutants and CO₂

And not on top of the solutions list

Conservation is best "alternative:"

- Faster, Cheaper, Easier
 - (compared to everything else we will talk about)
- Conservation includes:
 - 1. Demand reduction
 - 2. Efficiency improvement
 - 3. Reality check (3rd element of conservation)
 - 1. Can we support a single-occupant vehicle lifestyle?
 - 2. Will we stop sprawling, unplanned land use?
 - 3. Will we make mass transit work?

We might be oil-dependent for decades

But we do have nonfossil (and "clean" fossil) choices.

What were mine today?....

VIRGINIA CLEAN CITIES www.fueleconomy.gov

- Compare fuel economy
- Compare emissions
- Includes AFVs

VIRGINIA CLEAN CITIES Sport Utility Vehicle

- Tahoe 1995
- EPA rated 11/14
- \$5.94 fuel cost @ \$3.09 to drive 25 miles
- 26.3 barrels of petroleum for 15,000 annual miles
- 14.1 tons of CO2

VIRGINIA CLEAN CITIES Sport Utility Vehicle

- Tahoe 2009
- EPA rated 14/20
- \$4.29 fuel cost @ \$3.09 to drive 25 miles
- 19 barrels of petroleum for 15,000 annual miles
- 10.2 tons of CO2

VIRGINIA CLEAN CITIES Sport Utility Vehicle

- FFV version
- Tahoe 2009
- EPA rated 10/15
- \$4.14 fuel cost @ \$2.32 to drive 25 miles
- 5.7 barrels of petroleum for 15,000 annual miles
- 7.9 tons of CO2

Ethanol Properties

- Alcohol-based fuel produced from starch crops or cellulosic biomass (trees and grasses). Currently, corn is primary feedstock.
- High octane (100+); enhances octane properties of gasoline and used as oxygenate to reduce CO emissions.
- 27% 36% less energy content than gasoline. OEM's estimate 15% 30% decrease in mileage.
- E85 vehicles demonstrate a 25% reduction in ozone-forming emissions compared to gasoline.
- As an alternative fuel, most commonly used in a blend of 85% ethanol and 15% gasoline (E85).

Ethanol Uses

- Mostly used in light-duty vehicles called flexible fuel vehicles (FFVs). FFVs can use 100% unleaded fuel or any mixture of E85 and unleaded fuel.
- Several manufacturers offer FFVs in car and pickup configurations. See the AFDC Web:

www.eere.energy.gov/afdc

Ethanol Considerations

- Decreased mileage.
- High level of fuel pricing volatility until demand and supply balance.
- Refueling infrastructure not in place in all areas (1,800 stations in the U.S. Just more than 1 percent of gasoline stations.)
- Ongoing debate: energy balance, land mass, food and fuel, and water required.

VIRGINIA CLEAN CITIES Diesel/Biodiesel

- Diesel
- 2003 Jetta
- EPA rated 29/40
- \$2.43 fuel cost @ \$3.59 to drive 25 miles
- 10.6 barrels of petroleum for 15,000 annual miles
- 8.5 barrels if B20 used
- 5.7 tons of CO2

VIRGINIA CLEAN CITIES Diesel/Biodiesel

- Diesel
- 2009 Jetta
- EPA rated 29/40
- \$2.43 fuel cost @ \$3.59 to drive 25 miles
- 10.6 barrels of petroleum for 15,000 annual miles
- 8.5 barrels is B20 used
- 5.7 tons of CO2

•Qualifies for \$1,300 tax credit

• (advanced lean burn technology)

Biodiesel Properties

- Manufactured from vegetable oils, animal fats, or recycled restaurant greases; reacted with alcohol to produce fatty acid alkyl ester.
- Nontoxic, biodegradable, and reduces serious air pollutants.
- B20 (20% biodiesel, 80% petroleum diesel) can generally be used in unmodified diesel engines.
- Can be used in pure form (B100), but may require engine modifications.
- Has a higher cetane number and provides more lubricity.
- B20 contains 9% less energy content per gallon than #2 diesel.

Biodiesel Uses

- B20 can generally be used in all unmodified diesel engines.
- Using biodiesel maintains the same payload capacity and range and provides similar horsepower, torque, and fuel economy.

Biodiesel Considerations

- Potential issues with cold starting. Also, cold weather storage requires additional steps to keep biodiesel usable.
- Some OEM warranties specify no blend above B5.
- Limited production and availability.

VIRGINIA CLEAN CITIES Natural Gas Vehicle

- NGV
- 2009 Honda GX
- EPA rated 24/36
- \$1.29 fuel cost @ \$1.65 to drive 25 miles
- 0.1 barrels of petroleum for 15,000 annual miles
- 4.7 tons of CO2

- 2008 Qualified for \$4,000 tax credit
- Home fueling unit eligible for \$1,000 credit

Natural Gas Properties

- Recovered from underground reserves.
- Used in two forms: CNG (compressed natural gas) and LNG (liquefied natural gas).
- CNG and LNG vehicles can demonstrate reduced ozone-forming emissions compared to gasoline. May have increased hydrocarbon emissions.
- Contains 59% 69% less energy content per gallon at 3000 3600 psig than gasoline.
- Widespread distribution infrastructure (but not much retail).

CNG/LNG Uses

- CNG used in light- and medium-duty vehicles.
- LNG used in heavy-duty trucks and all natural gas fueled locomotives.
- CNG stored onboard at 3000 3600 psig.
- LNG stored at 50 psig and fuel temperature at -220^oF.

CNG/LNG Considerations

- CNG refueling stations are either slow-fill (several hours to fill) or fast-fill (2 5 minutes).
- Additional safety modification for maintenance facilities required by NEC (National Electrical Code) and NFPA (National Fire Protection Association).
- Higher vehicle costs because of required tank configuration.
- Shorter vehicle range for CNG vehicles.
- Availability of refueling stations.

VIRGINIA CLEAN CITIES Propane powered vehicles

- Largest AFV fleet is propane
- Mostly commercial vehicles

Propane vehicles, fuel and fueling infrastructure qualify for federal tax credits

Propane (LPG) Properties

- By-product of natural gas processing and crude oil refining.
- HD5, the automotive propane standard, a mixture of 90% propane and other hydrocarbons.
- Contains 33% 41% less energy content per gallon than gasoline.
- LPG vehicles can demonstrate a 60% reduction in ozone-forming emissions compared to gasoline.
- High octane properties (~104) allow LPG vehicles to operate with higher compression ratios; leads to higher efficiency/fuel economy.

Propane (LPG) Uses

- Used in light- and medium-duty vehicles, heavy-duty trucks and buses.
- Popular choice for non-road vehicles such as forklifts and agricultural and construction vehicles.
- Many propane vehicles are converted gasoline vehicles. (Conversion kits include regulator/vaporizer, air/fuel mixer, oxygen-monitoring closed-loop feedback system, and special fuel tank.)

Propane (LPG) Considerations

- Widespread infrastructure of pipelines, processing facilities, and storage (2,499 stations in U.S. offered LPG in 2006).
- For vehicles, need to balance range vs. payload reduction caused by larger fuel tanks.
- Increased vehicle costs.

- Hybrid Electric Vehicle
- Hybrid
- 2009 Prius
- EPA rated 48/45

- \$1.68 fuel cost @ \$3.59 to drive 25 miles
- 7.4 barrels of petroleum for 15,000 annual miles
- 4 tons of CO2
- Toyota hit 60,000-vehicle limit for for tax credit, which was \$3,150 at highest point

VIRGINIA CLEAN CITIES Hybrid Sport Utility Vehicle

- Hybrid version
- Tahoe 2009
- EPA rated 20/22
- \$3.51 fuel cost @
 \$3.09 to drive 25 miles
- 15.6 barrels of petroleum for 15,000 annual miles
- 8.3 tons of CO2
- Qualifies for \$2,200 federal tax credit

VIRGINIA CLEAN CITIES Low Speed Electric Vehicle

- GEM electric vehicles
- \$87 for power @ \$0.08 per KWH per year for 7,800 annual miles (GEM website calculator)
- \$0.011 per mile
- 28 cents to drive 25 miles

Electricity Properties

- Recharges batteries in electric vehicles.
- Electricity sources for battery recharging (electrical outlet, gasoline engine on-board vehicle, regenerative braking).
- Electricity sources for power outlets (coal, natural gas, nuclear, wind, other renewables).

Electricity Uses

- Two categories include EVs or plug-ins (externally charged) and HEVs or hybrid vehicles (self-charged). Both use battery storage.
- Available in neighborhood electric vehicles, bicycles, light-duty vehicles, medium- and heavy-duty trucks and buses.
- Hybrids use an electric motor or a combination of a gasoline engine and electric motor to drive the wheels. Hybrids use batteries to store electricity produced by regenerative braking and the onboard generator.
- Range of a dedicated electric is typically 50-130 miles.

Electricity Considerations

- Fuel savings (10% 100% depending on application and vehicle).
- Payback on investment.
- Possible federal and state tax credits for purchase of hybrid.

VIRGINIA CLEAN CITIES Comparing 8 vehicles

	1995 Tahoe 4wd gas	2009 Tahoe 4wd gas	2009 Tahoe 4wd FFV	2009 Tahoe 4wd Hybrid	2003 Jetta GTI Diesel	2009 Jetta Lean- Burn	2009 Honda Civic NGV	2009 Toyota Prius Hybrid
MPG (combined)	13	18	14	22	37	37	32	46
Fuel cost (25 miles)	5.94	4.29	4.14	3.51	2.43	2.43	1.29	1.68
Barrels annual	26.3	19	5.7	15.6	10.6	10.6	0.1	7.4
Tons CO2	14.1	10.2	7.9	8.3	5.7	5.7	4.7	4

•Unleaded \$3.09; Diesel \$3.59; E85 \$2.32; CNG \$1.65

virginia clean cities Comparing 8 vehicles

	1995 Tahoe 4wd gas	2009 Tahoe 4wd gas	2009 Tahoe 4wd FFV	2009 Tahoe 4wd Hybrid	2003 Jetta GTI Diesel	2009 Jetta Lean- Burn	2009 Honda Civic NGV	2009 Toyota Prius Hybrid
MPG (combined)	13	18	14	22	37	37	32	46
Fuel cost (25 miles)	5.94	4.29	4.14	3.51	2.43	2.43	1.29	1.68
Barrels annual	26.3	19	5.7	15.6	10.6	10.6	0.1	7.4
Tons CO2	14.1	10.2	7.9	8.3	5.7	5.7	4.7	4

•Unleaded \$3.09; Diesel \$3.59; E85 \$2.32; CNG \$1.65

virginia clean cities Comparing 8 vehicles

	1995 Tahoe 4wd gas	2009 Tahoe 4wd gas	2009 Tahoe 4wd FFV	2009 Tahoe 4wd Hybrid	2003 Jetta GTI Diesel	2009 Jetta Lean- Burn	2009 Honda Civic NGV	2009 Toyota Prius Hybrid
MPG (combined)	13	18	14	22	37	37	32	46
Fuel cost (25 miles)	5.94	4.29	4.14	3.51	2.43	2.43	1.29	1.68
Barrels annual	26.3	19	5.7	15.6	10.6	10.6	0.1	7.4
Tons CO2	14.1	10.2	7.9	8.3	5.7	5.7	4.7	4

•Unleaded \$3.09; Diesel \$3.59; E85 \$2.32; CNG \$1.65

VIRGINIA CLEAN CITIES Comparing 8 vehicles

	1995 Tahoe 4wd gas	2009 Tahoe 4wd gas	2009 Tahoe 4wd FFV	2009 Tahoe 4wd Hybrid	2003 Jetta GTI Diesel	2009 Jetta Lean- Burn	2009 Honda Civic NGV	2009 Toyota Prius Hybrid
MPG (combined)	13	18	14	22	37	37	32	46
Fuel cost (25 miles)	5.94	4.29	4.14	3.51	2.43	2.43	1.29	1.68
Barrels annual	26.3	19	5.7	15.6	10.6	10.6	0.1	7.4
Tons CO2	14.1	10.2	7.9	8.3	5.7	5.7	4.7	4

•Unleaded \$3.09; Diesel \$3.59; E85 \$2.32; CNG \$1.65

- FCEV (not for sale)
- HICE (BMW dual fuel)

FUELCEL

Hydrogen Properties

- Does not occur to any significant extent on earth in its free, elemental form.
- Found in chemical compositions such as water and hydrocarbons, and dry coal.
- Pure hydrogen contains no carbon thus burns to form water with no CO_2 or CO emissions.
- One kg of hydrogen contains roughly equivalent energy to one gallon of gasoline.
- Can be stored as compressed hydrogen at 5,000 10,000 psi or liquid hydrogen (cooled to -423⁰F).

Hydrogen Uses

- Emerging fuel for transportation fuel cells.
- Used in modified internal combustion engines.
- Fuel cells use a direct electrochemical reaction to produce electricity on board the vehicle. This electricity is used to power electric motors.
- Ongoing demonstration projects in select U.S. areas.

Hydrogen Considerations

- Vehicles not available for commercial sale.
- Infrastructure extremely limited

Contact Information

www.hrccc.org								
Chelsea Jenkins	757-256-8528	cjenkins@hrccc.org						
AI Christopher	804-436-3867	al.christopher@hrccc.org						