The Virginia Coastal Energy Research Consortium

Legislative Briefing Virginia Commission on Energy and Environment Richmond, VA

09 September 2008

Patrick G. Hatcher

Executive Director Batten Chair in Physical Sciences Old Dominion University

Neil Rondorf

VCERC Industry Partner Science Applications International Corporation

George Hagerman

VCERC Director of Research Virginia Tech Advanced Research Institute

Presentation Outline

- Virginia Coastal Energy Research Consortium (VCERC) background
- Comparing potential energy yields from offshore wind and from offshore natural gas on the Atlantic Outer Continental Shelf
- Virginia Energy Plan data on electricity imports and planned generation supply additions
- VCERC mapping of hypothetical offshore wind project footprints relative to other ocean uses: Is there sufficient non-excluded area to support wind projects that can meet future state needs?

Mission and Specific Strategies

Wission: The mission of the Virginia Coastal Energy Research (Working Group) is to identify and develop new coastal energy resources through multidisciplinary research collaborations and environmentally responsible strategies.

Strategies: Conduct research in areas consistent with a *diversified portfolio* of energy sources in coastal areas and offshore

Initial focus:

1. Offshore wind energy

2. Coastal Biomass for Biodiesel Production

VCERC Created by 2006 General Assembly to Bring Together Universities, State Agencies, and Industry

Virginia Coastal Energy Research Consortium

Mechanical, electrical, materials, civil, and ocean engineering Washington, DC area presence

Non-University VCERC Board

Integration of marine renewables into Virginia Energy Plan

VIRGINIA

Ensuring compatibility with other marine uses and coastal resources

Identification of manufacturing job creation opportunities and industry benefits of long-term, price-stable energy supply

Identification of waterfront development opportunities

With OldDominionUNIVERSITY

Physical, chemical, & geological ocean sciences

Biological ocean sciences

Wind energy engineering

Renewable energy curriculum development

High-tech workforce training Entrepreneurship development

Three Additional Universities and Two New Industry Representatives Added in 2007

Virginia Coastal Energy Research Consortium

Rice Center for Environmental Life Sciences expertise on natural algal blooms

Integration of GIS tool into Coastal GEMS

Non-University VCERC Board

Interface with local high-tech industry, including advanced manufacturing, sensors, and control systems

Virginia Coast Reserve Long-Term Ecological Research Project

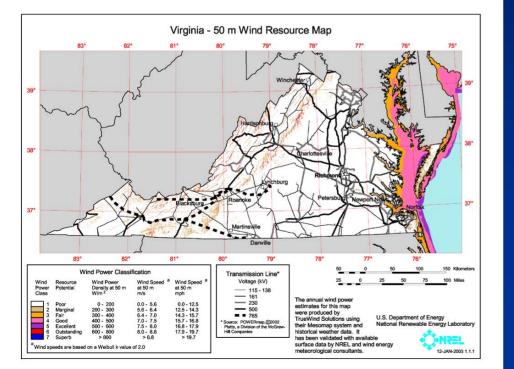
Chemical Engineering Department -- fuels testing and characterization

Research and development of alternative marine biofuels and bioproducts

Virginia Clean Cities and the Hampton Roads Clean Cities Coalition identify regional transportation needs and opportunities for fuels from algae and integration of offshore wind with plug-in hybrid electric vehicles

FY 2007-08 VCERC Budget Distribution

Project	VT-ARI	ODU	ODU (Industry)*	JMU	NSU	VIMS	Total
1	\$200K	\$150K	\$50K	\$15K	\$0K	\$0K*	\$425K
2	\$30K	\$64K	\$0K	\$120K	\$0K	\$50K	\$244K
3	\$20K	\$0K	\$100K	\$15K	\$75K	\$0K	\$195K
4	\$0K	\$511K	\$0K	\$0K	\$0K	\$100K	\$636K
Total	\$250K	\$725K	\$150K	\$150K	\$75K	\$150K	\$1,500K


* VIMS anticipates being able to support Project 1 through its normal Sea Grant activities and with a subset of the GIS data produced under Project 2.

In Oct 2007, higher-education budget cut of 10.6% to VCERC budget amendment was applied uniformly across all projects and universities

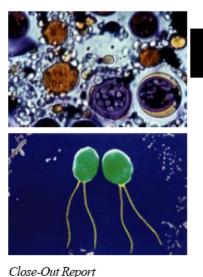
* ODU Industry Partner is SAIC Maritime Operations

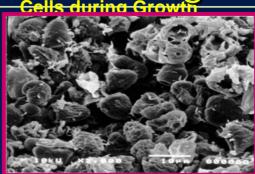
Wind Energy

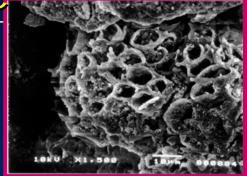
The best places for wind farms are in coastal areas, at the tops of rounded hills, open plains and gaps in mountains - places where the wind is strong and reliable.

To be worthwhile, you need an average wind speed of around 25 km/h.

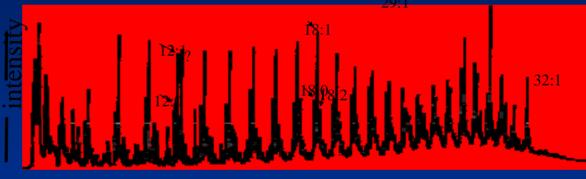
Coastal Biomass from Algae for the production of biodiesel or gasoline

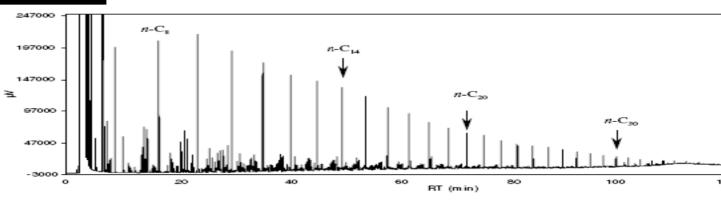

4-Million-Year-Old Fossilized Cell Walls

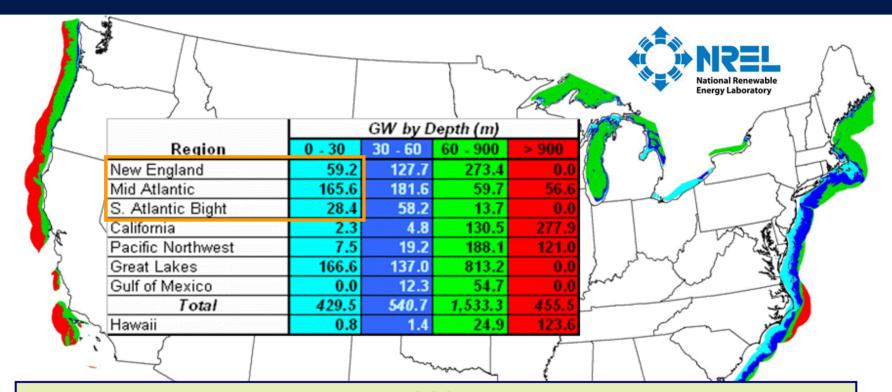

Estimated cost: \$1.40 to \$4.40/gal


National Renewable Energy Laboratory

NREL/TP-580-24190


A Look Back at the U.S. Department of Energy's Aquatic Species Program: Biodiesel from Algae




Fig. 1. GC trace of the total Safaniya oil.

Three Initial VCERC Projects Focus on Offshore Wind

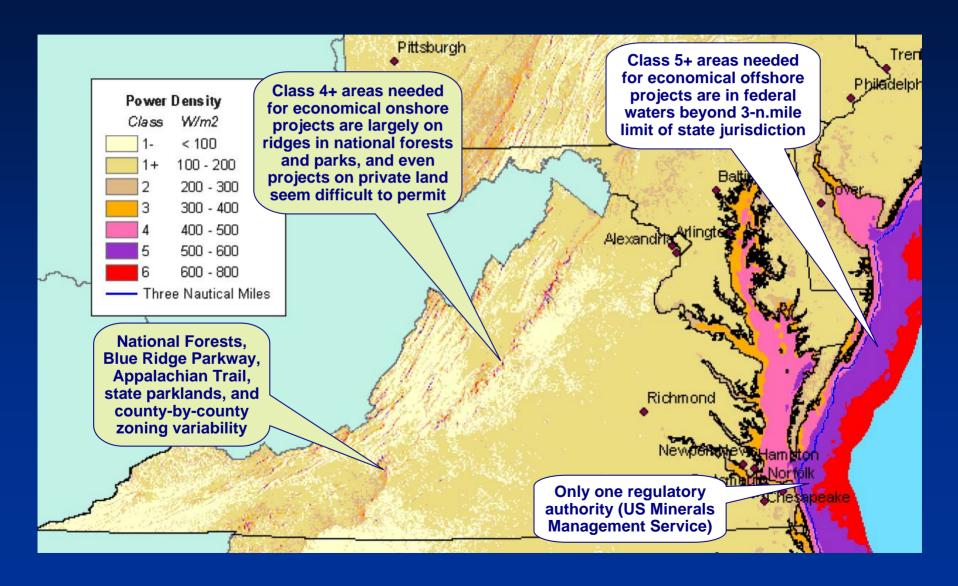
- 1. Feasibility-level design and economic assessment for a hypothetical reference baseline offshore wind power project
- 2. Preliminary mapping of offshore areas suitable for <u>offshore wind power</u> development, with identification of military training areas, shipping lanes, commercial fishing grounds, and marine and avian habitats
- 3. Evaluation of economic development potential of commercial <u>offshore wind power</u> development and associated workforce training needs, and planning for an ocean test bed
- 4. Feasibility-level design and economic assessment for an <u>algae-to-biodiesel</u> culture and processing system

US Offshore Wind Energy Potential Capacity Between 5 and 50 Nautical Miles Offshore

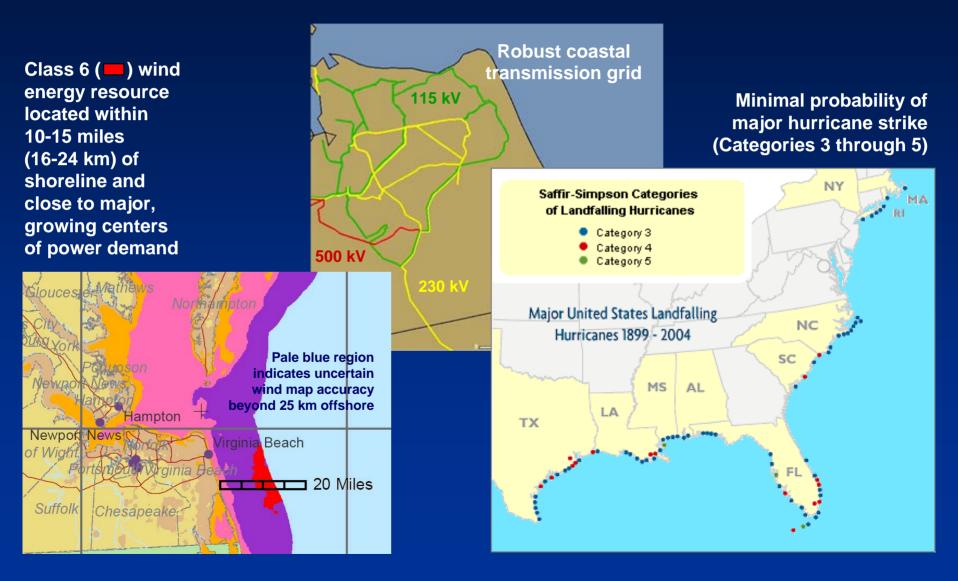
Total potential installed offshore Atlantic OCS wind capacity in water depths <30 m is 253.2 GW. At an annual average capacity factor of 35%, total annual electrical energy production would be 776,300 GWh. With a gas-fired power plant heat rate of 8.0 BCF per GWh, the equivalent natural gas usage that could be displaced by Atlantic OCS shallow-water offshore wind is ~6,210,000 BCF per year. Only a fraction of this total wind potential can be developed, due to other ocean uses and environmental concerns.

U.S. EIA Estimates for Offshore Oil & Gas Potential in Areas Covered by Moratorium

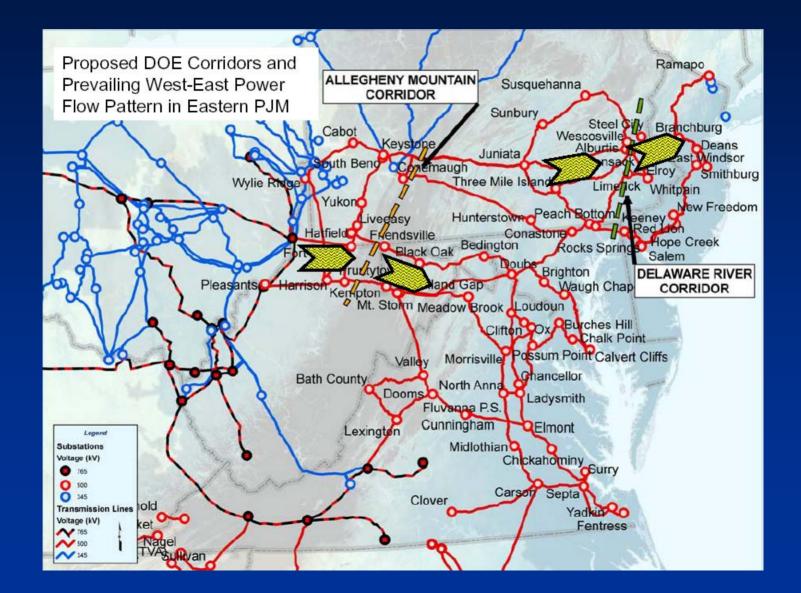
Table 10. Technically recoverable undiscovered oil and natural gas resources in the lower 48 Outer Continental Shelf as of January 1, 2003


OCS areas	Crude oil (billion barrels)	Natural gas (trillion cubic feet)
Available for leasing o	and development	
Eastern Gulf of Mexico	2.27	10.14
Central Gulf of Mexico	22.67	113.61
Western Gulf of Mexico	15.98	86.62
Total available	40.92	210.37
Unavailable for leasin	ng and developmen	t
Washington-Oregon	0.40	2.28
Northern California	2.08	3.58
Central California	2.31	2.41
Southern California	5.58	9.75
Eastern Gulf of Mexico	3.98	22.16
Atlantic	3.82	36.99
Total unavailable	18.17	77.17
Total Lower 48 OCS	59.09	287.54

Source: www.eia.doe.gov/oiaf/aeo/otheranalysis/ongr.html


Developing just 0.6 % (= 37 / 6,210) of the total potential Atlantic OCS shallow-water offshore wind potential would generate the same amount of electricity as all of the potential natural gas that could be produced on the Atlantic OCS.

Therefore, the most valuable use of the Atlantic OCS fossil natural gas resource might be to enhance offshore wind profitability by reducing intermittency and providing a bridge to marine biogas.


Virginia's Wind Energy Resources Offshore are Much Larger than on Land

Hampton Roads Area has Unique Features Favorable for Offshore Wind Power Development

Offshore Wind Might Relieve PJM Transmission Constraints from West to East

Electricity Import Scenarios for Virginia

(<u>www.dmme.virginia.gov/vaenergyplan.shtml</u>, Table 2-4)

Scenario	Year	Peak Electrical Demand for Virginia (MW)	Conservation & Energy Efficiency Savings	Conservation & Energy Efficiency (MW)	Net Summer Generation Capacity (MW)	Net Generation Change (MW)	Electricity Imports (% of Total Capacity)
Base Case	2005	32,026	0%	0	22,599		29.4%
1	2016	39,250	0%	0	22,599	0	42.4%
2	2016	39,250	0%	0	27,697	5,098	29.4%
3	2016	33,755	14%	5,495	22,599	0	33.0%
4	2016	33,755	14%	5,495	23,819	1,220	29.4%
5	2016	33,755	14%	5,495	33,755	11,156	0%

If there is **no** demand reduction through conservation and energy efficiency measures, than nearly 5,100 MW of new generation will be needed by 2016, in order to maintain electricity imports at existing levels (Base Case = 29.4%).

To Keep Import % Constant, Approximately 3,600 MW of New Generation Capacity is Needed

Scenario	Year	Peak Electrical Demand for Virginia (MW)	Virginia bas establisbed a target of meeting 10 percent of its 2006 electric demands)	Net Summer Generation Capacity (MW)	Net Generation Change (MW)	Electricity Imports (% of Total Capacity)
Base Case	2005	32,026	through conservation		22,599		29.4%
1	2016	39,250	<i>by 2022. Prorating this target over the</i>		22,599	0	42.4%
2	2016	39,250	next ten years, the		27,697	5,098	29.4%
3	2016	33,755	state should be able to meet 6 to 7		22,599	5,098 - 1,50	0 = 3,598
4	2016	33,755	percent of this goal, or nearly 1,500		23,819	1,220	29.4%
5	2016	33,755	megawatts, by 2016.		33,755	11,156	0%

If there is **1,500 MW** of demand reduction through conservation and energy efficiency measures, than new generation needed by 2016 is only \sim 3,600 MW, in order to maintain electricity imports at existing levels (Base Case = 29.4%).

Electric Generation Facilities Planned in Virginia

(www.dmme.virginia.gov/vaenergyplan.shtml, Table 4-3, modified)

Owner Name	Plant Name	Unit	County in Virginia	Primary Fuel	Nameplate Capacity (MW)	Estimated Commercial Online Date				
Feasibility Stage (Planned new generator undergoing feasibility study)										
Hydro Matrix LP	Flannagan Hydroelectric Project	1	Dickenson	Water	5	Not available				
Dominion Resources North Anna		NB3	Louisa	Uranium	917	January 1, 2050				
Proposed (New generator planned for installation)										
Virginia Electric & Power	Virginia City Hybrid Energy Center	ST1	Wise	Coal	585	June 1, 2012				
Applicatio	on Pending (Applicatio	on filed f	or permits, 1	egulatory ap	proval pend	ing)				
Dominion Resources	CPV Warren Power Generating	CC1	Warren	Natural Gas	520	June 1, 2010				
Highland New Wind Development LLC	Highland County Wind	WT1 19	Highland	Wind	38	December 31, 2008				
Dominion Resources	Ladysmith Generation Facility		Caroline	Natural Gas/Fuel Oil	300	August 2008				
Dominion Resources	Buckingham County		Buckingham	Natural Gas	580	Summer 2011				

Two landfill gas projects totaling 3.14 MW generation capacity are not shown here. Data on Buckingham County combined cycle plant are from www.dom.com/news/elec2008/pr0311a.jsp

At Least 1,600 MW of Additional Generation Needed by 2016 if Import % to Remain Constant

U	IW) generation proje by 2016 total 1,985	County in Virginia	Primary Fuel	Nameplate Capacity (MW)	Estimated Commercial Online Date	
Feas	ibility Stage (Planned	erator under	rgoing feasib	ility study)		
Hydro Matrix LP	Flannagan Hydroelectric Project	1	Dickenson	Water	5	Not available
Dominion Resources	North Anna	NB3	Louisa	Uranium	917	January 1, 2050
	Proposed (New g	generato	r planned fo	r installation)	
Virginia Electric & Power	0 0 0		Wise	Coal	585	June 1, 2012
Application Pending (Application filed for permits, regulatory approval pending)						ing)
Dominion Resources CPV Warren Power Generating		CC1	Warren	Natural Gas	520	June 1, 2010
Highland New Wind Development LLC	Highland County Wind	WT1 19	Highland	Wind	38	December 31, 2008
Dominion Resources	Ladysmith Generation Facility		Caroline	Natural Gas/Fuel Oil	300	August 2008
Dominion Resources Buckingham County			Buckingham	Natural Gas	580	Summer 2011

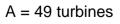
Two landfill gas projects totaling 3.14 MW generation capacity are not shown here. Data on Buckingham County combined cycle plant are from www.dom.com/news/elec2008/pr0311a.jsp

Accounting for Other Ocean Users, Offshore Wind Energy Potential Appears to Match State Needs

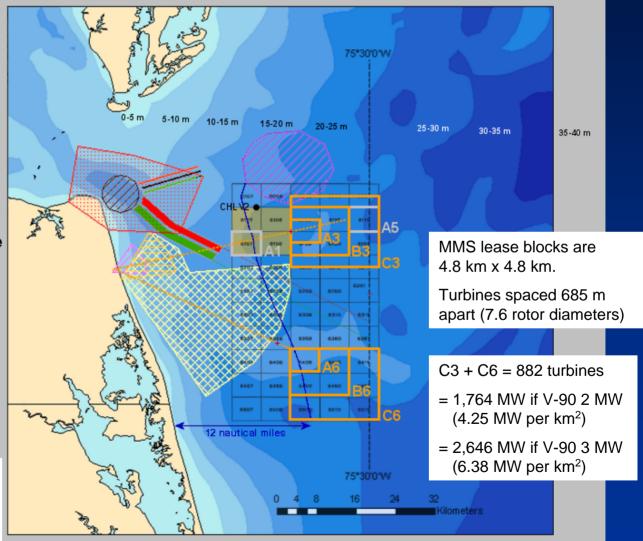
Virginia Capes Operating Area

Naval_Firing_Range

Naval Restricted Area


Firing_Range

Chesapeake Bay Entrance Vessel Traffic Separation Scheme



EA-Inbound-line

- EA-Separation-line
 - EA-Outbound-line
 - SA-Inbound-poly SA-Outbound-poly

- B = 196 turbines
- C = 441 turbines

Thank You!

Email: rondorfn@saic.com or hagerman@vt.edu