A Study of Increased Use of Renewable Energy Resources in Virginia

Prepared for The Virginia Commission on Electrical Utility Restructuring, January 6, 2006

The Virginia Center for Coal and Energy Research
Virginia Polytechnic Institute and State University
Michael Karmis, Director

Margaret Radcliffe
VCCER

Ryan Pletka
Black & Veatch
Contributors

- **Executive Summary**
 Black & Veatch – R. Pletka and J. Abiecunas

- **App A: Existing and Future Renewable Resources in Virginia**

- **App B: Electricity Generation Costs and Measures**
 NREL – L. Bird and G. Porro
 Black & Veatch – R. Pletka and J. Abiecunas

- **App C: The Incentives and Impediments to Renewable Energy Systems in Virginia**
 B. Sovacool and R. Hirsh, Consortium for Energy Restructuring, Virginia Polytechnic Institute and State University

- **App D: Economic Development Considerations**
 S. Aultman and J. Alwang, Department of Agricultural and Applied Economics, Virginia Polytechnic Institute and State University
Acknowledgements

The state and federal agencies that participated in discussions and meetings and provided information and discussion:

- Virginia Department of Mines, Minerals and Energy
- Virginia Department of Environmental Quality
- Virginia State Corporation Commission
- Energy Information Administration, U.S. Department of Energy
Objectives

- Review current renewable generation
- Look at prospects for future renewable development
- Compare costs for renewable with fossil fuels
- Review incentives and impediments to renewables
- Assess economic impacts of renewables in Virginia
- Discuss environmental compliance cost issues
- Provide recommendations and suggestions for future work
US Electrical Energy Breakdown

2003 US Electricity Generation

- Coal: 51.8%
- Nuclear: 19.9%
- Natural Gas: 16.7%
- Petroleum: 3.1%
- Hydro: 6.9%
- Geothermal: 16%
- Wind: 13%
- Biomass: 71%
- Renewables: 2.2%
- Others: Tidal, Wave, Ocean Thermal

Source: EIA 2004
Virginia Electrical Energy Breakdown

- Coal: 49.0%
- Nuclear: 33.6%
- Natural Gas: 5.8%
- Petroleum: 7.7%
- Hydro: 2.4%
- Other Renewables: 1.5%

Source: EIA
Technical and Near-Term Development Potential

<table>
<thead>
<tr>
<th>Source</th>
<th>Technical Potential (MW)</th>
<th>Near-Term Potential (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onshore wind</td>
<td>910 – 1,960</td>
<td>400</td>
</tr>
<tr>
<td>Offshore wind</td>
<td>1,300 – 32,000</td>
<td>0</td>
</tr>
<tr>
<td>Landfill gas</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Biomass</td>
<td>760</td>
<td>300</td>
</tr>
<tr>
<td>Solar photovoltaic</td>
<td>11,700 – 13,000</td>
<td><1-2</td>
</tr>
<tr>
<td>Hydroelectric</td>
<td>N/A</td>
<td>200</td>
</tr>
<tr>
<td>Totals</td>
<td>14,700 – 47,750</td>
<td>930</td>
</tr>
</tbody>
</table>

Source: NREL

Source: Black & Veatch
Levelized Cost of Energy Comparison for New Power Plants

Source: Black & Veatch Estimate

0 5 10 15 20 25 30 35 40 45 50
Natural Gas Simple Cycle
Natural Gas Combined Cycle
Coal Gasification
Scrubbed Coal
Solar Photovoltaic
Landfill Gas
Wind
Biomass Cofiring
Biomass
Hydro

Levelized Cost of Electricity, cents/kWh

2004 Average Market Price Range

To 99

Source: Black & Veatch Estimate
Government Incentives For Renewable Development in Virginia

Federal
- Production tax credits (1-2 cents/kWh)
- Investment tax credits
- Tax credits for alcohol fuels
- Accelerated depreciation schedules

State
- Local option property tax exemption for solar
- Small wind incentives
- Solar manufacturing grants
- Net metering
- Streamlined certification of small projects
<table>
<thead>
<tr>
<th>State</th>
<th>Renewable Portfolio Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA</td>
<td>20% by 2017</td>
</tr>
<tr>
<td>NV</td>
<td>15% by 2013, 5% Solar</td>
</tr>
<tr>
<td>AZ</td>
<td>15% by 2025</td>
</tr>
<tr>
<td>CO</td>
<td>10% by 2015, 4% Solar</td>
</tr>
<tr>
<td>NM</td>
<td>10% by 2011</td>
</tr>
<tr>
<td>MT</td>
<td>15% by 2015</td>
</tr>
<tr>
<td>MN</td>
<td>Xcel 1125MW BY 2010, 125MW Biomass</td>
</tr>
<tr>
<td>WI</td>
<td>2.2% by 2011, 4% Solar</td>
</tr>
<tr>
<td>IL</td>
<td>Goal: 8% by 2013</td>
</tr>
<tr>
<td>TX</td>
<td>10,000 MW by 2025</td>
</tr>
<tr>
<td>HI</td>
<td>20% by 2020</td>
</tr>
<tr>
<td>IA</td>
<td>105 MW</td>
</tr>
<tr>
<td>NY</td>
<td>24% by 2013</td>
</tr>
<tr>
<td>PA</td>
<td>8/10% Tier I/II by 2020</td>
</tr>
<tr>
<td>DC</td>
<td>11% by 2022</td>
</tr>
<tr>
<td>VT</td>
<td>Goal: All New Gen, 10% cap</td>
</tr>
<tr>
<td>ME</td>
<td>30% by 2010</td>
</tr>
<tr>
<td>MA</td>
<td>4% By 2009, +1%/yr after</td>
</tr>
<tr>
<td>CT</td>
<td>10% By 2020</td>
</tr>
<tr>
<td>RI</td>
<td>15% By 2019</td>
</tr>
<tr>
<td>NJ</td>
<td>6.5% By 2010</td>
</tr>
<tr>
<td>DE</td>
<td>10% By 2019</td>
</tr>
<tr>
<td>MD</td>
<td>7.5% By 2019</td>
</tr>
<tr>
<td>DC</td>
<td>11% By 2022</td>
</tr>
</tbody>
</table>
State Renewable Portfolio Standards
September 2005

States with RPS Requirements

VT Goal: All New Generation until 2012, 10% total cap

ME: 30%

NY: 24% by 2013

PA: 8% Tier I, 10% Tier II by 2020

CT: 10% By 2020

NJ: 6.5% By 2008

DE: 10% By 2019

MD: 7.5% By 2019

DC: 11% By 2022

RI: 15% By 2020

MA: 4% By 2009, +1%/yr after

VT Goal: All New Generation, 10% cap

NJ: 6.5% By 2008

CT: 10% By 2020

MD: 7.5% By 2019

DC: 11% By 2022

VT Goal: All New Generation until 2012, 10% total cap

ME: 30%
The PJM GATS Program

- PJM Generation Attributes Tracking System (GATS) allows tracking of electricity characteristics
- Like a “nutrition label” for electricity
- GATS enables states to:
 - Track environmental and emissions attributes
 - Monitor compliance with green power requirements
 - Help renewable generators obtain additional value for their renewable resources
- GATS certificates can be sold to those who must comply with state renewable standards, thus adding value to renewable generation
Economic Impacts

- In addition to the environment, renewables impact electricity rates, fuel prices, and jobs

- Direct and indirect impacts:
 - **Direct impacts** - money directly spent on materials, equipment, and labor
 - **Indirect impacts** – “spillover” effects from spending in the affected region

- Fair evaluation should include comparison to equivalent fossil fuel development

- Similar study for Pennsylvania showed potential significant net economic advantages for renewables
Employment Impacts from Renewable Technologies (PA)

- **Landfill Gas**
- **Hydro**
- **Solar**
- **Biomass Cofiring**
- **Wind**
- **Coal**
- **Gas Comb. Cycle**
- **Gas Simple Cycle**

Employment Impact, Job-years/MW

- **Renewable Energy**
- **Fossil Fuels**

- **20-year Operations Phase**
- **Construction Phase**
Environmental Compliance Costs

- Virginia participates in the EPA NO\(_X\) SIP Call and Acid Rain Programs to control NO\(_X\) and SO\(_2\)
- Clean Air Interstate Rule – Establishes permanent reduction caps on precursor emissions
- Renewable energy *might* reduce the cost of complying with CAIR, if coal-fired generation is retired and replaced by cheaper renewable energy
Conclusions

- **Objective**: initial assessment of renewables including current status, potential, costs, and incentives and impediments

- **Potential**:
 - NREL: over 15,000 MW based on resources available in Virginia, ignoring economic viability of developing these resources
 - Black & Veatch: 930 MW economically viable in the near-term (5-15 years)

- **Costs**: Hydro, biomass co-firing, wind and landfill gas cost competitive with fossil-fueled alternatives

- **PJM GATS**: Virginia utilities’ participation in PJM opens renewables energy markets. GATS certificates enable tracking of generation and compliance with state RPS programs

- **Most significant incentives**: federal production tax credit and state RPS programs

- **Most significant impediments**: intermittent nature of some renewables and uncertainty due to variability of federal policies
Recommendations

- Significant work is still needed to characterize renewables development potential in the state.
- Areas warranting further study include:
 - Resource assessment
 - Development costs estimates
 - Economic impacts analysis
 - Compliance costs and impacts
 - Best Public Policy alternatives
- Such in-depth analysis will provide valuable and accurate information to lawmakers, utilities, and community stakeholders.