A Study of Increased Use of Renewable Energy Resources in Virginia

Prepared for The Virginia Commission on Electrical Utility Restructuring, January 6, 2006

The Virginia Center for Coal and Energy Research Virginia Polytechnic Institute and State University Michael Karmis, Director

Margaret Radcliffe VCCER Ryan Pletka Black & Veatch

Contributors

- Executive Summary Black & Veatch – R. Pletka and J. Abiecunas
- App A: Existing and Future Renewable Resources in Virginia National Renewable Energy Laboratory (NREL) – L. Bird, D. Heimiller, G. Porro, P. Denholm and A. Milbrandt
- App B: Electricity Generation Costs and Measures NREL – L. Bird and G. Porro Black & Veatch – R. Pletka and J. Abiecunas
- App C: The Incentives and Impediments to Renewable Energy Systems in Virginia

B. Sovacool and R. Hirsh, Consortium for Energy Restructuring, Virginia Polytechnic Institute and State University

App D: Economic Development Considerations
S. Aultman and J. Alwang, Department of Agricultural and Applied Economics, Virginia Polytechnic Institute and State University

Acknowledgements

- The state and federal agencies that participated in discussions and meetings and provided information and discussion:
 - Virginia Department of Mines, Minerals and Energy
 - Virginia Department of Environmental Quality
 - Virginia State Corporation Commission
 - Energy Information Administration, U.S. Department of Energy

Objectives

- Review current renewable generation
- Look at prospects for future renewable development
- Compare costs for renewable with fossil fuels
- Review incentives and impediments to renewables
- Assess economic impacts of renewables in Virginia
- Discuss environmental compliance cost issues
- Provide recommendations and suggestions for future work

US Electrical Energy Breakdown

Virginia Electrical Energy Breakdown

Source: EIA

Technical and Near-Term Development Potential

Source	Technical Potential (MW)	Near-Term Potential (MW)
Onshore wind	910 — 1,960	400
Offshore wind	1,300 - 32,000	0
Landfill gas	30	30
Biomass	760	300
Solar photovoltaic	11,700 – 13,000	<1-2
Hydroelectric	N/A	200
Totals	14,700 - 47,750	930
	Source: NREL	Source: Black & Veatch

Levelized Cost of Energy Comparison for New Power Plants

Source: Black & Veatch Estimate

Government Incentives For Renewable Development in Virginia

- Federal
 - Production tax credits (1-2 cents/kWh)
 - Investment tax credits
 - Tax credits for alcohol fuels
 - Accelerated depreciation schedules

State

- Local option property tax exemption for solar
- Small wind incentives
- Solar manufacturing grants
- Net metering
- Streamlined certification of small projects

State Renewable Portfolio Standards December 2005

State Renewable Portfolio Standards September 2005

The PJM GATS Program

- PJM Generation Attributes Tracking System (GATS) allows tracking of electricity characteristics
- Like a "nutrition label" for electricity
- GATS enables states to:
 - Track environmental and emissions attributes
 - Monitor compliance with green power requirements
 - Help renewable generators obtain additional value for their renewable resources
- GATS certificates can be sold to those who must comply with state renewable standards, thus adding value to renewable generation

Economic Impacts

- In addition to the environment, renewables impact electricity rates, fuel prices, and jobs
- Direct and indirect impacts:
 - Direct impacts money directly spent on materials, equipment, and labor
 - Indirect impacts "spillover" effects from spending in the affected region
- Fair evaluation should include comparison to equivalent fossil fuel development
- Similar study for Pennsylvania showed potential significant net economic advantages for renewables

Employment Impacts from Renewable Technologies (PA)

Environmental Compliance Costs

- Virginia participates in the EPA NO_X SIP Call and Acid Rain Programs to control NO_X and SO₂
- Clean Air Interstate Rule Establishes permanent reduction caps on precursor emissions
- Renewable energy *might* reduce the cost of complying with CAIR, if coal-fired generation is retired and replaced by cheaper renewable energy

Conclusions

- Objective: initial assessment of renewables including current status, potential, costs, and incentives and impediments
- Potential:
 - <u>NREL</u>: over 15,000 MW based on resources available in Virginia, ignoring economic viability of developing these resources
 - <u>Black & Veatch</u>: 930 MW economically viable in the near-term (5-15 years)
- Costs: Hydro, biomass co-firing, wind and landfill gas cost competitive with fossil-fueled alternatives
- PJM GATS: Virginia utilities' participation in PJM opens renewables energy markets. GATS certificates enable tracking of generation and compliance with state RPS programs
- Most significant incentives: federal production tax credit and state RPS programs
- Most significant impediments: intermittent nature of some renewables and uncertainty due to variability of federal policies

Recommendations

- Significant work is still needed to characterize renewables development potential in the state
- Areas warranting further study include:
 - Resource assessment
 - Development costs estimates
 - Economic impacts analysis
 - Compliance costs and impacts
 - Best Public Policy alternatives
- Such in-depth analysis will provide valuable and accurate information to lawmakers, utilities and community stakeholders